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RESEARCH OBJECTIVES

es one is unable to place the available weapons to cover every

installation so as to attain a minimum specified damage on each instal-

lation, the supply of weapons may be considered as a scarce resource

which must be assigned to targets in such a way as to optimize a pre-

scribed objective. The prescribed objective may be strictly military or

economic or a composite of various intentions. On the other hand, when

it is possible to sufficiently fulfill the objective, it may be advan-

tageous to obtain the assignment of weapons which is optimal with respect

to other criteria such as cost, reserves, and combat efficiency. Within

the scope of this study, we consider a mixture of weapons and delivery

vehicle types.

There are numerous factors and constraints which pertain to this

assignment problem in its actual application, and such actual assignments

require quite sizable investments of manpower and computation time. This

research addresses the mathematical modeling analysis and solution of the

assignment problem focusing on damage evaluation and supply, range, and

coverage constraints as well as the dispersion restrictions on the weapon

carried in any single delivery vehicle. The solution of the model is

not intended as a blueprint for actual assignments by strategic units, but

rather by concentrating just on these factors we intend the model as an

analytical tool to assess the present detailed assignment algorithms

and to evaluate future policy concerning nuclear weapon and delivery

system procurement, deployment, targeting, and strategic arms limitation.
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Accordingly, this research Is directed toward a model which affords a

reasonably quick solution algorithm; thus , the algorithm may be used to

give broad consideration to many hypothetical alternatives, to provide

a starting point from which a detailed blueprint for actual assignments

by strategic units is constructed, or to generally evaluate present

ass ignment schemes.

STATUS OF RESEARCH

At the beginning of this research the problet~i was presented in

raw form . Although many important components had been identified, these

components had not been characterized mathematically and there was no

comprehensive framework for synthesis and analysis. Thus, the initial

effort was concentrated on defining and mathematically characterizing the

relevant features of the tiered aimpoint system, weapons, delivery

vehicles, and a general value system. These characterizations led to a

preliminary system of constraints.

1. Each delivery vehicle carried a fixed number of
weapons.

2. The weapons could only be assigned to DGZs of matching
type within the tiered aimpoint system.

3~ Only DGZs in range of the delivery vehicle may be
assigned weapons.

4. The weapons carried by any single delivery vehicle can
only be disbursed within the footprint of that vehicle.

The consideration of range resulted in the Mercator computation of acces—

sibility of weapon to DGZ. While the footprint of any delivery vehicle



can be described as a complicated amalgam of physical processes, such

computations have proved to be the major obstacle in providing the

desired quick, analytical tool. Herein we develop the parallelogram

footprint approximation of the true footprint; this device allows the

consideration of footprint in the model without excessive computation-

al burdens. While not an exact description of reality, the parallelo-

gram footprint approximation is reasonable for the purposes of the quick,

analytical tool.

Accordingly, the task became defined as finding th~ assignments which

obtain the optimal or near optimal level of value subject to constraints.

The notion of value extracted due to the assignment of any particular

weapon, however, was obscured by the possible interactive effects of

various weapons. This confounding was minimized by the addition of dummy

DGZs to resolve the cases in which many weapons are assigned to one of the

original DGZs or in which some of the assigned weapons cover the same in-

stallations. While this adds constraints to the problem, It eliminates

the nonadditivity of the values extracted by each weapon. Dummy DGZs

allow some interactive effects among weapons, yet, albeit subtly, allow

the separate extracted values to be added to provide a measure of utility

of an entire assignment.

The result of this modeling and approximation admitted a mixed

integer/linear programming mathematical synopsis of the problem. While

the simpler problem without dispersion restrictions can be solved using

branch—and—bound with linear programming as the fathoming device since

~at problem structure allows quick access to a feasible integral optimun,

an examination of some small sample problems revealed that this algorithm



would be slow in the cases including dispersion restrictions. Problems

of this type contain a large number of variables. Identification of

decompositions of the problem by delivery vehicles enabled the cons truc—

tion of primal and dual solution algorithms which converge to the optimal

assignment. So even if the solution procedure is truncated we obtain a

feasible assignment and a measure of its closeness to optimality. In

view of the analytical objectives , this is a reasonable result.

LIST OF WRITT EN PUBLICATIONS IN TECHNICAL JOURNAL S

“A model of weapons assignment including dispersion constraints” to be
submitted to Operations Research or Naval Research Logistics

Quarterly is in preparation by Jerren Gould.

PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT

Principal Investigator: Professor Jerren Gould
Mathematics Department
Claremont Graduate School
Claremont, California 91711
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INTERACTIONS

1. “Optimal weapon assignment in a tiered aimpoint system,” (with
thCapt. S. J. Monaco) working group paper, 40— Military

Operations Research Society Symposium, 14 December 1977,
Monterey, California.

2. Consultative visit to FJSRL/NH included presentation of a parallelo-

gram approximation of footprint to Lt. C. John Brush, Capt.

S.J. Monaco, and Maj. Warren Langley. Briefings were provided

on alternative value systems and new methods of generating

the tiered aimpoint system. 10—11 April 1978.

3. Consultative visit HAF/SA and HAF/SASM included presentation of

decomposition by delivery vehicle method and some computational

results on small problems to Capt. Bert Knight, Capt. S.J.

Monaco, and some of staff at HAF/SA. 28—29 June 1978.
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INTRODUCTION

There are various types of delivery vehicles in which nuclear weapons

are conveyed to a target. Any individual delivery vehicle may be cate-

gorized according to:

1. launch point

2. range

3. number of weapons conveyed

4. yield of each weapon

5. restrictions on the dispersion of the weapons

.4 Based on these characteristics, it may be determined whether a particular

collection of aimpoints are accessible to the weapons in a given delivery

vehicle. All of the weapons carried in a single delivery vehicle must

be targeted in a neighborhood of the others. For MIRVed ballistic

missiles such a neighborhood is called a footprint; for manned bombers

a reasonable flight path must be demonstrable. For delivery vehicles

which carry a single weapon, the criterion reduces trivially to range.

The domain of a potential adversary contains numerous installations

(airfields, missile silos, factories, etc.) and each installation has

been appointed a value according to a given system of utility. There are

several levels of weapon yield, called tiers. The value extracted from

an installation depends on the tier of the weapon assigned to cover that

installation as well as the location of the aimpoint relative to the

location of the installation.

The main treatment herein is the case in which there are insufficient

numbers of weapons allocated to a strike to extract value from every



installation. Such a scenario is called a target—rich environment . The

analysis and solution of other important scenarios follow analagously.

TIERED AIMPOINT SYSTEM

The supply of available weapons consists of weapons of various yields.

The tier of a weapon corresponds to its yield inversely. That is, the

lowest tier corresponds to the highest yield and the highest tier cor-

responds to the lowest tier ; we shall assume that the tier ranges over

the integers 1 to T. The tiered aimpoint system is a device to cope with

the diversity of weapon yields. For each tier a collection of potential

aimpoints, or designated ground zeros (DGZ), is generated.

The domain of a potential adversary is divided into complexes

(target islands). A complex is a region containing installations such

that a hit by a weapon at any point within the region will not affect in-

stallations in any other complex. The location of tier 1 DGZs are deter-

mined so as to partition the collection of installations in the complex

into subcomplexes. The number and layout of these DGZs are constructed

so as to obtain at least a threshold fraction of value extracted subject

to prudence and parsimony. Within each subcomplex defined by the tier 1

DGZs, the higher tier DGZs are determined, tier by tier, in the same

manner as the tier 1 DGZs are found within the complex. The value

extracted by the weapons of any higher tier in a subeomplex must approximate

the value extracted by ~~~~~~‘ tier 1 weapon. Various parameters, such as

hardness of any installation, affect the layout of the DGZs in any tier



and heights of burst. An adaptation of Cooper’s algorithm (13] may be

used to define the layout of DGZs.

Certain hardened installations may require more than one weapon of

the same tier to extract sufficient value. In such a case we consider

this single installation as several installations. Despite the fact that

these dummy installations share a common location, they may be partitioned

into distinct DGZs; thus, each such dummy installation may be covered by

a weapon without the others necessarily being covered. The values ex-

tracted from these dummy installations are constructed so as to incorporate

the cooperative effects of multiple coverage. For example, the values

extracted from the additional dummy installations may represent the marginal

value extracted due to the assignment of the additional weapons which

cover the real installation.

We label all of the DGZs in the layout as j = 1,... ,N. Each DGZ has

a unique tier even though the coordinates of several aimpoints are identical.

Let t2(j) represent the tier of DGZ j. Let 1(j) be the set of installations

covered by DGZ j. By construction, for each tier t , {I(j)~ j Et;
1(t)} is

a partition of the set of installations, I. Also, if t2
(j) = 1 and

j E 1(j’), then 1(f) C 1(j); that is, the higher tier DGZs are nested

within the subcomplex.

The layout of DGZs is constructed without regard to the delivery

system deployment, dispersion characteristics , and inventory of weapons.

If there is no assignment of weapons to DGZs so that sufficient value is

extracted from every installation, we have a target—rich environment.

Otherwise, we have a weapon—rich environment.
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DELIVERY VEHICLES

We shall assume that the weapons conveyed within each delivery

vehicle are identical. We label the delivery vehicles k = 1. ..,K.

Let be the number of weapons , or reentry vehicles (RV), carried by

delivery vehicle k , and let t1(k) represent the common tier of weapons

carried by delivery vehicle k.

Each DGZ is constructed to accept a weapon of only one particular

tier. That is, a weapon from delivery vehicle k may be assigned to

DGZ j  only if t
1
(k) t2(j). The ranges of all the weapons in delivery

vehicle k are identical. Let R.K 
be the common range of weapon in

delivery vehicle k. Since the locations of the launch site of delivery

vehicle k and the DGZ j are known, by spherical trigonometry and considera—

tion of the rotation of the earth during flight we can calculate the

distance d.~ between the launch site k and DGZ j. It is a necessary con-

dition for a weapon to be assigned from delivery vehicle k to DGZ j that

both the range criterion be satisfied and the tiers of the weapon and DGZ

match. We define the accessibility index

fi if t
1
(k) = t

2
(j) and d.~ < R,~

a
kj

10 otherwise.

Clearly, d.~ need only be calculated for delivery vehicles and DGZs with

matching tiers. Another computational saving may be accrued whenever

similar delivery vehicles carrying a common tier of weapon are located in

a relatively small neighborhood of each other as compared to the flight

distances; in that case we can say that the delivery vehicles share a
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launch site of delivery vehicle k

•fc 

Figure 1 Mercator Projection with the North

Pole as the Launch Site
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common launch site. We can analogously find a representative launch

site for the SLBMS by considering the centroid of any patrol region.

If one wishes to ignore time of flight, the computation of

may be simplified. For the launch site of each delivery vehicle, or

for each launch field, the map of the world is transf ormed by rectifying

the great circles through the ‘launch site in a manner akin to a Mercator

projection. In such a case, d.~ is readily obtained as the latitude

coordinate of DGZ j in the new map with the launch site as a pole.

VALUE

If a weapon is assigned to DGZ j, the tier of the weapon must

match the tier of the DGZ. By construction, v~1, 
the value extracted

from installation i when a weapon is assigned to DGZ j, is known.

These values extracted depend on the value of the installation, its

hardness, and its geographic relationship to the aimpoint. Random

var!ations due to aiming and reliability uncertainties are incorporated

by fixing Vjj as the expected value extracted. It is possible that

damage may be incurred to installations not covered by the DGZs, but

we shall assume that, in terms of value extracted, this damage is negli—

gible; that Is, v
ii 

— 0 whenever I f 1(j ). Due to certain strategic!

political considerations, certain installations must not be

_ _  _  

I
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damaged. For each DGZ j which covers such a “flagged” installation,

we fix V~~ z<O to insure that any reasonable weapons assignment

would deny weapons to any DGZ convering installation I.

Let

r 1 if a weapon from delivery vehicle k is
) assigned to DGZ j

kj ~(~ 0 otherwise.

Clearly, the decision variables a
ki 

are the unknowns we must determine

for a solution of the problem.

The values extracted from distinct installations are assumed to

be additive. However, if weapons are assigned to DGZs which cover

the same installation (because of dummy DGZs this will only happen

if the weapons are of distinct tiers), the total value extracted from

the installation should not be the sum of the separate extracted values.

Let J(i) = {j~iEI(j)} be the set of DGZs which cover the installation

I. A reasonable measure of the value extracted from installation i is

the greatest value extracted from that installation for any weapon

assigned to a DGZ which covers installation I; that is,

max a v
k,JEJ(i) kj ji

Accordingly, in a target—rich environment we wish to f ind the feasible

assignment {a,~~} which maximizes

~~~ 
Sk4 V

i~ 
(1)

I k,jEJ(i) ~

Thus, only assignments which conduce a largest value extracted for some

installation contribute to the objective; hence, others should be reassigned

_ _ _ _ _ _  ____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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elsewhere. Notice that the a priori creation of dummy installations for

certain targets allows some value extracted to accrue when the target

is covered more than once.

Thus, in any optimal assignment every DGZ which receives a weapon

must contain an installation from which it extracts the dominant value.

When an installation is hit more than once, according to the objective

(1) some weapons effectively extract no value from the installation.

Although it is possible for this case to occur in an optimal solution

in a target—rich environment this waste should rarely occur. That is,

almost all assignments will be to DGZs in which there is no competition

among the weapons to extract value from the installations covered.

Hence, as an approximation we exclude such competition by forbidding

assignment schemes in which any installation is covered more than

once. This constraint is

~~~~~ Vi (2)
k,jEJ(i)

Accordingly, the objective (1) transforms to

max a
ki 

Vj ~ ~ 
akj 

V
j~ 

(3)
i k,jEJ(i) k,j

where = 
~ 

v~~ is the value extracted from all of the installations
iK 1(j)

in DZG j when an appropriately tiered weapon is so assigned. In a

target—rich environment we may presume that all of the weapons allocated

to a strike will be used.
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DISPERS ION

The dispersion problem arises because the weapons from a single

delivery vehicle cannot be assigned arbitrarily, but rather each must

be assigned to a DGZ “near” to the other DGZs receiving a weapon from

the same delivery vehicle.

Each weapon carried in a MIRVed ballistic missile is first con-

veyed by the delivery vehicle until it is near the target region;

each weapon separates from the delivery vehicle and is finally con—

- veyed to the assigned DGZ (aimpoint) by a reentry vehicle. The region

•. into which these weapons must be aimed is called the footprint of

the delivery vehicle.

While the true footprint is somewhat amorphous because it depends

on many factors which cannot and should not be considered in this

analysis, it is generally somewhat elliptical. We shall assume that the

boundary of the footprint is truly an ellipse with an axis parallel

to a great circle through the launch point. The approximation of the

elliptical footprint by a parallelogram footprint allows a mathematically

more convenient characterization of the dispersion constraints for

MIRVs. The parallelogram footprint allows a linear form of the dis-

persion constraints, whereas other characterizations of the footprint

constraints are either inherently nonlinear or introduce more variables

into the analysis.

Parallelogram footprint

Suppose delivery vehicle k is directed to (X.
~
,Yk

), the midpoint

of its footprint. The coordinates (X.K
,Y
k
) are variables to be determined

— - ‘- .~ ___._‘ -.

-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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in the optimization. Let be half of the downrange reach and

be half of the cross range reach of the parallelogram footrpint charac-

terization of delivery vehicle k. Let (xj,yj
) be the coordinates of

DGZ j. DGZ j will be within the parallelogram footprint if and only

if (Xk,Yk) is chosen so that

Ok J XJ-.XI,J + 
~ ~~~ 

(4)

Let us define 
-

e - 
IXf Xk if

j k 1~o if Xj
(X.K

and (5 )

10 if

~Jk 
= 

txk_xj if x~<X~

Clearly, e
jk 

and are nonnegative and not simultaneously positive.

Clearly, ejk
+f
jk 

= x~—X.~ ) .  Similarly, we def ine

= fYj~~k 
~~ ~‘j~~ k

jk
if

and (6)

10 if y?Y
hj k

if

and observe also that and h
ik 

are nonnegative, not simultaneously

positive, and g
jk

+h
jk ~j~~k’

t
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Consider the following constraints to represent the parallelogram

footprint constraints f or the delivery vehicles

+ e
jk ~j k X

j V3, k (7)

Y
k 
+ 8jk

_h
jk ~k Vj , k (8)

O
k

(e
jk
+fjk

) + (~1~+h~~) — Pkakj — U
k
(l—aj

) ~ 0 Vj , k (9)

where U
k 

is a suitably large number. It can be shown that when these

constraints are embedded within the total model that there are algo—

rithms which can guarantee nonnegative solutions for e
jk~ ~jk

’ ~~~ 
hjk

with the appropriate pairs not simultaneously positive. Hence, the

definitions (5,6) and (7,8) of e
ik~ ~jk

’ 8jk’ hik 
coincide. Since

a.~ shall be constrained to 0 or 1, these constraints (7—9) admit

two cases:

(1) a
ki 

= 1; here constraints (7—9) are equivalent to the fact

that DGZ j must lie within the paralellogram footprint of

delivery vehicle k as it must if such an assignment is

to be made.

(2) a
ki 

0; since a weapon from delivery vehicle k is not

assigned to DGZ j, it is irrelevant whether DCZ j lies in

the parallelogram footprint. Here constraints (7—9) merely

serve to reflect the fact that DGZ j lies within a much

larger parallelogram. So If U
k 

is chosen suff iciently large ,

these constraints will always be satisfied when a.~ — 0.

“I
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Finding the best parallelogram footprint approximation to the
true footprint

For our analysis here we shall consider the midpoint 0 as the

origin of a Cartesian coordinate system. There are two types of errors

that may occur in the designation of any footprint for analytic purposes.

Let P denote the set of points within the parallelogram and T

denote the set of points within the true footprint. We have a type 1

error for the points in T—P; roughly speaking, a type 1 error implies

we have possibly prohibited making an assignment because of the mathe-

matical formulation when, in fact, the assignment is physically
-
, realizable. On the other hand, we have a type 2 error for the points

in P—T; a type 2 error implies that we have possibly permitted an

assignment which is not physically realizable.

-I;.

.0

N

Figure 2 Comparison of true footprint and
parallelogram footprint with
coincident midpoints

_ _
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _
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Let c
1 

be the loss assoc iated with a unit area of type 1 error

and c
2 

be the loss associated with a unit area of type 2 error. Hence,

a measure of closeness of the parallelogram approximation is

c(P) c1 
x area of (T—P) + c2 x area of (P—T) . (10)

Thus one can find a best parallelogram footprint approximation by

solving for P such that c(P) 5 c(P) for all parallelograms P with

midpoint 0.

Let the true footprint be an ellipse with half downrange reach

• r and half crossrange reach rio. Thus, the boundary of the true

(elliptical) footprint is a2x2+y
2 

= r2. The boundary of a parallelo-

gram footprint with half downrange reach p and half crossrange reach

pie may be represented in the first quadrant as y —Ox+p. Let

q (a2r2+02r2_o2r2)l/2 . The points of intersection in Figure 3 are

(x
1
,y
1
) = 

2
1 
2 (Opf-q,o

2p—Oq) (11)
a’ +0 -

(x2,y2) = 2
1 

2 (ep—q,o
2p+Oq) (12)

~ +0

\% \~
‘“ ,

I

S ~/. •ls

Figure 3 Quadrant of comparison of elliptic
and parallelogram footprints

~~~~ - -~~~~~~ -~~~~~~ —~~~~~~~-— -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~—~~~~~~•
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r2 — 1 y2 —l y1 y p  2
Hence , C(p,8) — 2c1

{ —  f tan (~~—) — tan (~~—) J + + x2p— ~~ }

~‘1~ r2 —l y —l ax2+ 2c2{x 2p + -j-- — — (tan— + tan (~~~)J }  (13)

To find the best parallelogram P(p,e) we must solve the system

of equations

aC(~,O) = LQ1 = 0. (14)

Such a solution may only be attempted numerically given the values of

c1, c2, r, and a. Accordingly, we introduce a simpler alternative method

with a different measure of closeness.

Here we restrict the problem by fixing a=O; that is , the ratio

of major axis to minor axis of the ellipse and the parallelogram are

identical. We wish to find the value of p which minimizes the

maximal distance disparity between the boundaries of the elliptical and

• parallelogram footprints. By disparity we mean the shortest distance

as measured from any fixed point on one footprint boundary to the other

footprint boundary. By symmetry we need only consider the first quad-

rant. From Figure 4 it becomes clear after some analysis that the

maximum is obtained as either the length of AS, CD, or EF. From

analytic geometry we f ind

length AS “
~ 2 1/2

(1+c )

length CD p — r

length EF (p—r) ia ..

________ A
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A 

-

F E

r/o p i e

Figure 4 Minimax criterion for determining the
best parallelogram approximation (o 8)

• Hence, the solution for p which minimizes the maximum distance dis-

parity reduces to the following linear programming problem:

minimize E (15)

subject to E ~ 2 1/2 (16)
(14-a )

E ~ p—r (17)

E ~ (p—r) ia  (18)

r 5 p 5 V ~i r .  (19)

The value of p which achieves the optimum is

— r [ (l+cy2)~~’2 + V~ min(l,a)] - (20)
[(l+a ) + mm (1,a)]

So according to this criterion the best parallelogram footprint approxi-

mation to the true footprint a2x
2+y2 r2 is given by half downrange

L ~~~~~~~~

--- ‘
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reach ~ and half crossrange reach p/a. In applications r and

a depend on the properties of delivery vehicle k; hence, ~ may

depend on k. In considering assignments the footprints are translated

so that the midpoint of the footprint of delivery vehicle k is

k”~k~~

MATHEMATICAL STATEMENT OF THE PROBLEM FOR BALLISTIC MISSILES

We wish to find assignments of weapons to DCZs which do well

(optimize) the total value extracted subject to the constraints of

accessibility, avoidance of multiple coverage (with the a priori -

exceptions due to dummy DGZs), and dispersion due to footprint. Let

denote the number of weapons carried by delivery vehicle k;

clearly, we must also include the constraint (23) that no more than

weapons from delivery vehicle k be assigned to DCZs.

Formally, the; we obtain the mixed integer/linear programming

problem

N K
maximize ~ a~ 4 v (21)

j—l k—l ~

subject to a~~ — a
ki 

Vj,k (22)

N

~ 
a~J _  ~

L
k 

Vk (23)
j—l

K
a 5 1  Vi (24)

k 1  JEJ(i)  kj

X
k 
+ e

Jk
—f j k 

— xj  Vj , k (25)

_  _  _ _  

•
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+ 8jk 
— h

ik 
— Yj Vj,k (26)

O
k

(e
jk 

+ 
~jk~ 

+ (g~~ + hik)

Pk
a
kj — U

k
(l
~~~j
) 5 0 Vj ,k (27)

• a
kJ~

e
~k~

f .k )8lk~
h

Jk 
Vj , k (28)

integer Vj , k (29)

Since a~~ is constrained to be a nonnegative integer, constraint (24)

further implies that a.~ is either 0 or 1, as is desired. It becomes

evident now that there exists a feasible assignment, namely a.
KJ 

= 0 Vkj;

this assignment, however, accrues no value. The objective function (21)

drives the problem to find the maximal total value extracted subject to

the constraints. Since the set of feasible assignments is nonempty and

finite, problem (21—29) has a solution.

Due to the large number of variables in problem (21—29) and the

binary nature of each a
kf 

the computational aspects of finding the solu-

tion are quite cumbersome. In view of the uses of the results , we may be

satisfied with good suboptimal feasible assignment schemes . This approach

is especially important in a target—rich environment in which a computer

algorithm may spend the majority of time finding an optimal assignment

with small marginal return over a good suboptimal solution reached

quickly.
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A DUAL SOLUTION METHOD

Herein we shall incorporate the accessibility constraints (22) by

removing all variables subscripted or kj 
whenever = 0. Let

rk 
= 
~ 

cx.~4 be the number of DGZs access ible to the weapons of delivery
i -J

vehicle k. For each k we may define the functions k(L) (k,jt
), where

is the £-~~ DGZ accessible to delivery vehicle k according to some

ordering. We now introduce the following notation:

• -~k = 
~~k(l) ’ • ~ 

- 
~ 
a~(~~))

= ~~~~~~ - • • Vk(r )) 
-

~ k 
= 

~~k(l) ’

~~k’ ~k’ ek(l)~ ~k(l) ’ 8k(l) ’ hk(l)~ - - ‘ 
~k(r~)’ 

h
k~~~~

).

Note that the components of ~~~~~~, ~~~~~ , and do not depend on the first

component of k(t). Suppose that m of the constraints (24) are non—

redundant. Let be the m x rk 
matrix with element (c,d) being 1 if

DGZ k(d) appears in the nonredundant constraint of (24). Accordingly,

the mathematical statement may be rewritten as:

k
max (30)

k—l
k

subject to 
~ ~k 

~~ ~-o 
— (31)

k-l

— ~~~~~~~~~~~~~~~~~~~~~~~~ — ‘~~~~~~~~ —~~~~‘ ~~~~~ ‘—— ~~—~~~ -~~~ -~
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(Uk — P k) ‘rk 
Dk ... S ( ~~~~ - lak (32)

o : 
~k

Vk (33)

~~ binary Vk• ~~u4)

- J 0 0
- 

—T
i

(U1— p )I -r1
O 0

J

Let F = 

2
_
~~~

1r2 
• •

~ (Uk
_ P

k)Irk
J

and H E
1 

0

D2
E2 

•

0 
-
.

N. _J .
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Ii].
For A = ( and Z = ( , the constraints (31, 32 , 34)

b-o

may be represented as FA + HZ b, where k = : and A is

binary. Let F = { A~~Z~ 0) HZ b — FA, A binary}. Hence , A is a

feasible binary solution iff ~ E F.

- 
0 I a k

• - Let i~ = ~ l , where ~ is m x 1 and = ( ~ with

k

°k’ ~~~ 
~~~~~~, 1 x 1, rk x 1, and 2r

k 
x 1, respectively, for k = 1,.. .,K.

By Farkas’ Lemma, 3z ~ 0 
) HZ b — FA 1ff (b - FA)’ r~ ~ 0 whenever

H’i
~ ~ 0 , ~ 0, and a..~ 

> 0, > 0 for k = 1,..., K. Let C be

the cone of such values of r~.

By duality [1], we may reformulate the problem as

1 K
max ~ ~~~~~~ + min {(b — FA)’ n }  ~~. (35)
AEF ~EC J

C is nonempty. Moreover since a feasible solution to the original

problem exists, the minimum in (35) is obtained at an extreme point of

C-

— -- ~ -.~~~~•~~~~-- ~~~~~ — •~~~~~~~~~~
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Let C have extreme points ~(e) 
~~ — ~~~ “~e’ 

and extreme rays

(r)
1k ‘ ~ — j, .,nl

~ 
Hence, we rewrite (35) as

maximize V (36)

subject to

~~ 
~~~~~~~ 

+ (k— F&’ ~1
(e) 

~ = 1’” ” ~e

(k —  F~) ’  11(r) 
~~ ~~~, ~ = 

~‘“‘~r 
(38)

~~ 
binary. (39)

Consider now a relaxation of (36—39)

maximize V (40)

subject to

V 5 + (b - FA)’ (e) V i E 12 
(41)

— F~) ’ ~ 0 V i E 12 (42)

• ~~ binary, (43)

• where I~ and 12 
are subsets of the integers l,...,ne and

respectively. In the usual way of considering relaxations, we may

obtain an iterative procedure for solution of the original problem:

1. Initialize I~ and 1
2 

with a few (or no) elements

each.

2. Obtain V~, ~~ as the finite optimal solution to

(40—43) .
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3. Solve W — mm (b — FA~) ’  ~ (44)

• subject to H’ fl ~ 0 (45)

V k  (46)

j
~ , > O  

• 

(47)

4. (a) If W 5 0, then A~ is the solution to the original

problem and the optimal subjective value is V~.

Stop.

(b) If 0 < W < ~~~, then (44—47) has a finite optimal

solution at ~~~~ with

~ 

a~ ~~ + (b - F~~)’ a~ . (48)

The vector is an extreme point of C not

yet considered in (41). Enlarge I, so that

is considered in (41). Return to Step 2.

(c) If V = ~~~, then (44—47) has an extreme ray

(e)
and an extreme point n such that the objective

becomes unbounded along the half—line

= ,~(e) + ~~
(r) 

~~~~ • Accordingly,

• (b — F~~) ’ (r) < o. Hence, enlarge 12 to

include ~~r) If , in addition, (48) is true,

also enlarge I~ to include 1
(e) Return to

Step 2.

The finite convergence of this algorithm follows directly from the

finite number of constraints in (36—39).

• _ _ _ _ _ _ _ _ _ _ _ _
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We may simplify problem (44—47) by decomposing it into sub—

problems according to delivery vehicle since

• 
. 

(k-F~~)’ !1 - 
~~~ k-1

1
~~~ 

n~
K

+

K
+ 2: (U~~~ - (U

k~
p
k
)
~~
)’
~~k-i k

+ 

~~~~~~~~~ 
1k

is separably additive. That is, solving (44—47) is equivalent to

solving

• mm (UkJ - (U
k

_P
k

)
~~~

) ’ 
~~ 

+ (~~ 
y ’) ~~ (50)

subject to

(51)

(52)

mm 
~~~~~~~~~~~

subject to a
k 

> ~),

for each k=l,..., K, and

mm cj .~ - k—l 1
~~~ 

~0

subject to ~ 0.

The quantity W is the sum of the optimal values of the objectives of

(50, 53, 55).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1

Problem (40—43) is a linear program with binary variables.

Since successive problems (40—43) in the iteration differ by the addi-

tion of one or two constraints, a cutting—plane method [8, 11, 7, 9)

may be efficient.

At any iteration V~ provides an upper bound on the objective

value of the original problem. As we proceed through the iterations,

V~ is nonincreasing. We, however, only obtain a feasible solution to

the original problem when the iteration is terminated.

A PRIMAL SOLUTION METHOD

Let us adopt (30—34) as the form of the problem, but add

the redundant constraints & ~ 
j  and rewrite (32) as

A

B k c .

Let Sk 
= [(~) i:(~):~ ’(~) 

~~~
} 

have

~4k (a)
extreme points &&k

~4k~~~

is a bounded convex set; an arbitrary element can be written as

a convex combination of its extreme points 2:
~~k~~k’ 

where Zr
~k

=le
and 

~tk~°~ 
Hence, the problem without the integer constraints may

be stated as

V maximize 2: 2: 
~tk ~tk (57)

p k t

• 

_



subject to

~ ~~k~tk + I s - b (58)

— 1 Vk (59)

> 0 Vt ,k, (60)

where — 

~~ ~~~~~ 
and !

~k 
— 

~k ~~k
(a) and s represents slack

variables. The initial basis consists of s J and ~ ...y =1
— —m 11 1K

corresponding to the extreme points ~11(a) 0,... ,~~~ (a) 0. With

proper choice of global coordinate system, we find the remaining non—

• - : negative components of extreme point 
~lk 

as e
jk 

— X
j 

and 8jk

The form of the master program (57—60) is readily amenable to generalized

lower bounding, a specialization of the simplex method which solves such

problems while maintaining a m~ “working basis” [5].

For working basis B, let (wj ~~) 
= ~~ B~~, where

consists of the dual variables corresponding to the m constraints (58)

and consists of the dual variables corresponding to the K con-

straints (59). Let denote the Xxi vector with 1 in the k
th

row and 0 otherwise. Hence, the “added value” for including the

variable into the basis is

— (w ’ w ’)
£k tic —1 —v

— (~~ 
= 

~i ~k
1 ~- k

(a) — 

~ok~ 
(61)

Since 
~ k

(a) is the decision variable component of an extreme point
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of Sic~ 
we may find the largest “added value” for any fixed k by

solving

W
k 

- max 
~~ 

— ‘
~ok (62)

aubject to
‘a1-k -

Bk t (63)

~~~~~ ~~~~ . (64)

The “added value” for including the slack variable s~ into the basis

is —w1 . If max (max V~, max (—w1 ))50, then we have obtained the
- • k 

A j
• • optimal solution to the problem without the integer constraints. Other-

wise, we enter into the basis the variable corresponding to the largest

“added value.” Note that the solution of (62—64) must occur at an

extreme point of S~. When is constrained to be binary, for each k

it can be arranged that there is a unique 
~~~~~ 

in constraint (59).

For each k, the problems (62—64) are much smaller than the

original and, hence, the solutions are computationally easier to obtain.

Therefore, it is here we reintroduce the integer constraints, 
~k 

binary.

By solving (62—64) with the additional constraints binary by the

method of cutting planes, we adaptively shrink S~ and may find new

“extreme points” due to the cuts. Note that it is not necessary in the

master program to have an a priori evaluation of all the extreme points

k’ but rather to keep track of the current basis and entering

extreme point as defined by (62—64) with ~~ binary.

In this primal algorithm we start with a basis which yields

a 0 objective value. At each iteration, the objective function is
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nondecreasing. While adding the constraints 
; 

binary at each iteration

destroys the guarantee of convergence to the optimum of the original

problem, at each iteration we have a feasible, binary solution.

NEAR OPTIMAL SOLUTIONS

0At any iteration in the dual method VD provides an upper

bound on the total optimal value extracted; however, only at optimality

is the corres ponding binary ~~ feasible. At any iteration in the

primal method V~ provides a lower bound on the total optimal value

• extrac ted, but the corres pond ing ~~ is feasible and binary. As

the dual approaches optimality there is likely to be a large number

of iterations with marginal reduction of total value extracted due

to the target—rich environment. Also, in addition the primal method

being computationally slowe r because of the combinatorially grea ter

binary considerations in (62—64) for each k, there is no guarantee

of convergence of the primal method to optimality. Hence, if V~

and V~ are relatively close we may terminate computation and accept

as a good suboptimal solution with total value extracted V~.

Alternatively, it may be possible to deassign some weapons from

to obtain a feasible binary solution with total value extracted better

than V~ . The degree of closeness of V~ and V~ are direc tly rela ted

to the rates of convergence and the computational capability and patience

of the user.
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ALTERNATIVE PARALLELOGRAM FOOTPRINTS

In the model (21—29) previously presented we have res tricted each

individual delivery vehicle to only one possible footprint. The

physical mechanism whereby weapons are thrust from delivery vehicles,

however, allows a var iety of potential foo tprin t shapes ranging
• from prolate to oblate. Let

half downrange reach
half crossrange reach

For any f ixed a, using the minimax criterion with 0 a the best

parallel ogram foo tprint approx imation may be represented as (0,p
0).

Figure 5 Oblate and Prolate
Footprints
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As we shall see , each possible value of 0 for a delivery

vehicle introduces a large number of additional variable. Furthermore,

these footprints include much of the same area in common. Let v
k

be the number of potential footprints for delivery vehicle k. From the

computational standpoint , the problem is already immense with Vk — 1 V k;

however , if one uses V
k

2 for some k, the best values to consider

are (most oblate) and 0
2 
(most prolate). One may also consider

keeping \
~ic

lV k , but give diversity to the single choices of O
~~ 

for

identical delivery vehicle types. Recall that it is only required that

the relevant DGZs lie within the parallelogram footprint; their con—

figuration within the footprint is irrelevant for the purposes of this

investigation.

We represent the mth potential parallelogram footprint as

(e~~,p~~). For k l ,... ,X and m l ,...,vk, let q~~ indicate

whether delivery vehicle k uses its m
th 

potential parallelogram

footprint. Also , let d
kj 

indicate whether a weapon from delivery

vehicle k is assigned to DGZ~ using footprint m. Note that a

delivery vehicle may adopt only one of the potential footprints. Hence,

we may generalize the model:
K N

maximize 2: 2: au v1 (65)
k”l j—l ‘ -‘

subject to a~~ s (66)

Vk
2: d a (67)
m=l kjm kj

dkjm s q~~ (68)
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N
(69)

i—i J

K
2: 2: ak . l (70)
k’4 jEJ(i)

+ e~~~ — f
1~~ — (71)

Y + °  - h  -~~~ ~72
km °jkm jkni ‘j

+ 
~jkm~ 

+ 
~~j km + hjkm)

_P
km
dkjm 

— U(l_ d kjm) ~

• Vk
Z q ~~~si  (75)

m l

a.~~, di c j ,  elkm, ~~~m ’ 5am’ hjkm, q~~ ~ 0 (76)

8
kj’ ~~~ 

dkjm 
integer.

FLIGHT PATHS FOR MANNED BOMBERS

If delivery vehicle k is a manned bomber , then it proceeds

from a given initial point , makes a tour of its ass igned DGZs , and

terminates at one of a set of designated airfields. If we allow a

manned bomber a generous footprint and appropriately calculate a

priori accessibilities we may defer evaluation of feasibility of the

flight path to an external algorithm.

_ _ _ _ _  
—

~~~~~~~~~~~~~~
• •.

~

_ _ _ _ _ _ _ _ _ _ _ _ _  --
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• If the terminus is fixed then demonstration of flight path

feasibility is mathematically equivalent to a travel ing salesman

problem. If the terminus is left variable, the airfield capacities

- must be observed. While such algorithms exist, common sense is likely

to be quicker because is relatively small and there is a natural

order to the tour. Furthermore, in a target—rich environment we may

alter the assigned DGZs to make the flight path feasible or more

sensible without much loss of total value extracted.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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NOTATION

indicator of the DGZs assigned to weapons from delivery
vehicle ic

a.K 
indicator whether a weapon from delivery vehicle k ~~
assigned to DCZ j

A vector of assignment variables for all delivery vehicles

tentative dual assignment solution

tentative primal assignment solution

C cone of dual variables which yield primal feasible solutions

distance between the launch point of delivery vehicle k
I -

..  
j  and DGZ j

indicator of whether a weapon from delivery vehicle k is
-‘ assigned to DGZ j using footprint m

• ejic 
positive part of x

j 
—

ej km positive part of —

F set of feasible binary assignments

negative part of x~ —

~jk~ 
negative part of —

Elk 
positive part of y

3 
—

positive part of y
1 

— Ykm
hj k negative part of —

hjkm 
• negative part of —

I • set of installations

1(j) set of ivstallations covered by DGZ j

I n x n identity matrix
n

3(1) set of DGZs which cover installation i

3 n x 1 vector of unities
-n

—• ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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K number of delivery vehi’~les

a function returning k and the et~ DGZ accessib le to weapon
from delivery vehicle k

N nuirber of DCZs

n uumber of extreme p~in~s of C
e

n number of extreme rays of C
r

P region enclosed by parallelogram footprint

coverage induced by ç~~ (a)

installation coverage indicator for DGZs accessible to
• •• weapons from delivery vehicle k

indicator of whether delivery vehicle k adopts potential
parallelogram footprint m

r half downrange reach of true footprint

rk 
number of DGZs accessible to weapons from delivery vehicle k

range of weapon from delivery vehicle k

polytope generated by constraints relative to delivery
vehicle k

T region enclosed by true footprint

a function such that t
1
(k) is the tier of weapon carried

by delivery vehicle k

t2 i function such that t2(j) is the tier of DGZ j

Uk 
a suitably large number

• v
1 

value extra~ted from the installations in DGZ j

values of the DGZs accessible to weapons from delivery
vehicle Ic

v value extracted from installation i when a weapon is
.1 assigned to DGZ j
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tentative dual objective value

tentative primal objective value

crossrange coordinates of DGZs accessible to weapons from
delivery vehicle k

(x1,y1
) coordinates of DGZ j

(Xu,Yu) midpoint of the parallelogram footprint of delivery vehicle k

(Xkm,Ykm) midpoint of the m~~ potential parallelogram footprint ofdelivery vehicle k

downrange coordinates of DGZs accessible to weapons from
delivery vehicle k

Z vector of dispersion variables for all delivery vehicles

midpoint of the parallelogram footprint of delivery vehicle k
and differences to coordinates of DGZs accessible to weapons
from delivery vehicle k

dual variable corresponding to the capacity constraint for
delivery vehicle k

accessibility indicator for weapons from delivery vehicle k
to DGZ j

• vector of dual variables corresponding to the parallelogram
footprint constraints for delivery vehicle Ic

vector of dual variables corresponding to constraints of
location of the footprint of delivery vehicle k

indicator of inclusion of

• thk— column of ‘K

• vector of dual variables

__ 
vector of dual variables corresponding to the single coverage
constraints

vector of dual variables corresponding to capacity and dispersion
constraints for delivery vehicle k
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an extreme point of C

4r) an extreme ray of C

ratio of downrange reach to crossrange reach of the parallelo-
gram footprint delivery vehicle k

0km ratio of downrange reach to crossrange reach of nr~~ potential
footprint of delivery vehicle k

number of weapons in delivery vehicle k

Vk number of potential parallelogram footprints of delivery
vehicle k

an extreme point of S~

• • (~~(a) elements of ~~~ corresponding to the assignment variables of

delivery vehicle k

elements of ~~~ corresponding to the location of the foo~~rint

of delivery vehicle k

half downrange reach of the parallelogram footprint of delivery
vehicle k

~km half downrange reach of the m~~ potential parallelogram footprintfor delivery vehicle k

a ratio of downrange reach to crossrange reach of true footprint

value accrued at

“added value” for including ~~~

w dual variables corresponding to convexity of

dual variables corresponding to single coverage constraints

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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EPILOGUE

The goal of including the dispersion constraints while simul-

taneously finding optimal (or near optimal) assignments of weapons to

DCZs is, indeed, valuable. This, however, introduces a problem of

• great computational size. While we have produced here a model and

solution methodology, it is yet to be determined whether any computer

system possesses the size and speed to generate significant results.

Thus, the next step appears to be the coding of an algorithm for execu—

• tion on an increasingly large sequence of test problems. In such a

way we may determine the magnitude and scope of problems which can

be approached with presently available computer technology. It appears

evident that every computational trick and device must be explored in

order to place the larger problems on a computer and have them executed

in reasonable time; efficient coding and virtual storage are identif led

as key elements of this task.

Even if the problem with the entire set of weapons and DGZs

allocated to a given exercise is too large for significant computational

results, it is likely that a decomposition to smaller subproblems with

a smart recombination will produce good suboptimal results. Also, if

at the first stage we identify a good assignment without dispersion,

then within a target—rich environment it may not be difficult to perturb

the assignment to obtain a good assignment which also satisfies the

dispersion constraints. That is, problem (21—24) is amenable to

linear programming algorithms; if we apply branch—and—bound using
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constraints (29) , because of the special structure of the polytope

of feasible solutions to (21—24) we may quickly f ind an optimal solution

of (21—24 , 29); then only the perturbation to satisf y dispersion

remains.
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